- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Brun, Yuriy (2)
-
Hoag, Austin (2)
-
Kostas, James E. (2)
-
Thomas, Philip S. (2)
-
Castro da Silva, Bruno (1)
-
Chandak, Yash (1)
-
Jordan, Scott (1)
-
Kostas, James (1)
-
Theocharous, Georgios (1)
-
Thomas, Philip (1)
-
da Silva, Bruno Castro (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract—We present the Seldonian Toolkit, which enables software engineers to integrate provably safe and fair machine learning algorithms into their systems. Software systems that use data and machine learning are routinely deployed in a wide range of settings from medical applications, autonomous vehicles, the criminal justice system, and hiring processes. These systems, however, can produce unsafe and unfair behavior, such as suggesting potentially fatal medical treatments, making racist or sexist predictions, or facilitating radicalization and polarization. To reduce these undesirable behaviors, software engineers need the ability to easily integrate their machine- learning-based systems with domain-specific safety and fairness requirements defined by domain experts, such as doctors and hiring managers. The Seldonian Toolkit provides special machine learning algorithms that enable software engineers to incorporate such expert-defined requirements of safety and fairness into their systems, while provably guaranteeing those requirements will be satisfied. A video demonstrating the Seldonian Toolkit is available at https://youtu.be/wHR-hDm9jX4/.more » « less
-
Hoag, Austin; Kostas, James E.; da Silva, Bruno Castro; Thomas, Philip S.; Brun, Yuriy (, Proceedings of the Demonstrations Track at the 45th International Conference on Software Engineering (ICSE))
-
Kostas, James; Chandak, Yash; Jordan, Scott; Theocharous, Georgios; Thomas, Philip (, Proceedings of Machine Learning Research)null (Ed.)
An official website of the United States government

Full Text Available